人工智能与预测分析的关系
让我们回顾一些帮助定义预测分析的基本事实,然后看看人工智能如何很好地适应这些界限。在它的核心,预测分析当然是预测某种东西的。谁会买?某些设备会坏吗?哪种价格能使利润较大化?这些问题中的每一个都可以通过以下熟悉的工作流来解决:
首先,我们确定一个希望预测和收集关于该度量或状态的历史信息的度量或状态。例如,确定数百万名顾客中哪些人对过去的营销活动作出了反应。
接下来,我们收集可能与预测我们的目标相关的更多数据。例如,每个客户的过去的支出,人口概况,等等。
然后,我们通过一个或多个算法传递数据,这些算法试图在目标和附加数据之间找到关系。
通过该过程,创建一个模型,如果向其输入新数据,就会产生预测。如果顾客有这份资料,她将有何反应?如果我们在这一点上定价,我们将会有多大的利润?
人工智能过程中遵循的目标和步骤是相同的。让我们看两个例子。
以图像识别为例。首先,我们识别了一堆猫的照片。然后,我们拿了一堆非猫的照片。我们通过对图像的深度学习算法来学习准确地预测图像是否是一只猫。当得到一个新的图像时,模型将以图像是猫的概率来回答。听起来很像预测分析,不是吗?
现在让我们考虑自然语言处理(NLP)。我们收集了各种各样的陈述,这些陈述都包含了我们关心的特定含义。我们还收集了广泛的其他发言。我们对数据运行NLP过程,试图找出如何分辨什么是重要的,以及如何分辨被询问的内容。当我们向过程中输入新的文本行时,它将以概率的方式确定语句的意义是什么。NLP过程将为各种可能的解释分配概率,并将其发回(想想沃森扮演的危险)。这听起来也很像预测。